



# THE JPL CRYOLAB SUPPORT FOR DEEP SUBGLACIAL IN-SITU SCIENCE AND TECHNOLOGY PROGRAMS

#### FRANK CARSEY and LLOYD FRENCH

JET PROPULSION LABORATORY









#### EARTH AND PLANETARY DEEP SUBGLACIAL SCIENCE

#### Earth:

Ice Dynamics: Basal Processes, Changes in Frozen-Wet Boundary, Fabric Paleoclimatology (Glaciochemistry): Composition, Dust Concentration Subglacial Lakes: Water Chemistry, Dynamics

#### Mars:

Climate History: Chemical Horizons, Dust Mineralogy, Sedimentology, Isotopic Geochronology

Biology: Organics, Chemical Strata, Sediment Mineralogy

#### Europa:

Biology: Biochemical Inclusions, Organic Abundance, Particulate Makeup, Chemical Strata, Ice Biota

History: Profiles of Inorganics, Sediment Character





## TECHNOLOGIES FOR PLANETARY SUBGLACIAL SCIENCE

- Scientific In-Situ Sample Acquisition Process
  - Where on planet/Where at site/What sample/What in sample?
- Access to Subsurface
  - Mobility to multi-kilometer depths
- "Documentation" In the Subglacial
  - Regional Scale: radar or sonar mapping
  - Local Scale: Photography, sonar, radar
  - Microscale: Microscopy, Electron or Visible Light
- Scientific Observation
  - Micro-instrumentation: Mass-Spec, Raman/Fluor. Spec., etc
- Planetary Protection: An Issue of Increasing Significance
  - aning, Verification





#### SPECIFYING THE JPL CRYOBOT DEVELOPMENT



#### **CRYOBOT:**

- OBJECTIVES
  - In-Situ Science in Surrounding Ice, Meltwater
  - Chemistry; Gas Analysis; Particulate Study; Inclusions
  - Detection of Biomarkers
- REQUIREMENTS (LONG-TERM)
  - Space-Capable (Mass/Volume/Power/Data Rate/Autonomy)
  - Range to 30 km
  - Non-Contaminating
  - Tolerate Environmental Uncertainty
  - Accommodate Science Instrumentation TBD







### Europa







F Carsey, 2001









A Concept of the Europa Ice and Ocean Due to David Stevenson of Caltech, Science, 2000



at the same time.





















Cover and Article in Marine technology Society Journal, 33, 23-28, 2000







F Carsey, 2001



## SUBGLACIAL ACCESS: NASA-JPL "CRYOBOT" VER. 1 -- BEFORE NASA THESE WERE CALLED PHILBERTH PROBES









F Carsey, 2001





# PRESSURE VESSEL TESTBED: Ice Camera Probe Caltech-JPL West Antarctic Basal Ice Study















#### BOREHOLE CAMERA DEPLOYMENT













#### KEY PERFORMANCE METRICS

| FY01                     | SOA          | Goal           |
|--------------------------|--------------|----------------|
| Hardware Technology      |              |                |
| Nose heaters             | 5W/cm2       | 8W/cm2         |
| Pump heaters             | 40W/cm       | 60W/cm         |
| Tether                   | 0.9cm DIA    | 0.3cm DIA      |
| Tether Deploy            | spool        | spoolless      |
| Electronics Package      | 7000cm3      | 3500cm3        |
| High voltage             | 120VDC       | 400VDC         |
| Icy Sample               | clear        | mixed          |
| Instrument package       | 0            | 4              |
| Performance Technology   |              |                |
| Temperature              | -25C         | -70C           |
| Thermal Efficiency       | 75%          | 85%            |
| Descent Performance      | 0.4m/hr      | 1.2m/hr        |
| Ice/sediment mobility    | 10micron; 5% | 750micron; 10% |
| Sensor control           | open loop    | closed loop    |
| FY02                     | SOA          | Goal           |
| Hardware Technology      |              |                |
| bio-signature instrument | 0            | 1              |
| acoustic driver package  | 4000 cm3     | 1000 cm3       |
| Performance Technology   |              |                |
| steering                 | verticle     | 5 deg off axis |
| obsticle avoidance       | none         | 10 meters      |
| Descent depth            | 5m           | 300m           |







#### HIGH PRESSURE INSTRUMENTATION: Hydrothermal Vent (Deep Water) Probe

















#### ANTARCTIC BOREHOLE PHOTOGRAPHY: DEBRIS LAYERS











### ISOLATED CLASTS







Up in Figure is Down in Ice; Scale is About 3X5 cm





#### ROOF OF SUBGLACIAL "LAKE" UNDER ICE STREAM C







## IN SUMMARY: ICE IN-SITU EXPLORATION TECHNOLOGY: A COMPLEX TASK BUT MOVING FORWARD



- New Results on Earth and Planetary Ice Call For Deep Subsurface In-Situ Exploration
- First Results of Ice Borehole Probe From Antarctica Illustrate Utility of In-Situ Methods
- Recalling In-Situ Data Acquisition Strategy-Where on planet/Where at site/What sample/What in sample?
- We Are Making Headway:
   Laboratory Facilities for Testing New Ideas
   Robotic Access to the Deep Subsurface
   Micro-Instrumentation for In-Situ Science
- We Have Found It Necessary to Involve Many Funding Sources: Nothing New In That









#### ICE WELL UNDER CONSTRUCTION





F Carsey, 2001





### CRYOLAB UNDER DEVELOPMENT













